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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose thatu is an “unknown” vector that we plan to
determine by some minimization principle. LetA[u] > 0 andB[u] > 0 be two
positive functionals ofu, so that we can try to determineu by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers foru.) As another possibility,
now suppose that we want to minimizeA[u] subject to theconstraint thatB[u] have
some particular value, sayb. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u] − b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

whereλ1 is a Lagrange multiplier. Notice thatb is absent in the second equality,
since it doesn’t depend onu.

Next, suppose that we change our minds and decide to minimizeB[u] subject
to the constraint thatA[u] have a particular value,a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u] − a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time,λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant1/λ2, and identifying1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say,u(λ1). As λ1 varies from0 to ∞, the solutionu(λ1)
varies along a so-calledtrade-off curve between the problem of minimizingA and
the problem of minimizingB. Any solution along this curve can equally well
be thought of as either (i) a minimization ofA for some constrained value ofB,
or (ii) a minimization ofB for some constrained value ofA, or (iii) a weighted
minimization of the sumA + λ1B.

The second preliminary point has to do withdegenerate minimization principles.
In the example above, now suppose thatA[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrixA and vectorc. If A has fewer rows than columns, or ifA is square
but degenerate (has a nontrivial nullspace, see§2.6, especially Figure 2.6.1), then
minimizingA[u] will not give a unique solution foru. (To see why, review§15.4,
and note that for a “design matrix”A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.)However, if we add any
multipleλ times a nondegenerate quadratic formB[u], for exampleu · H · u with H
a positive definite matrix, then minimization ofA[u] + λB[u] will lead to a unique
solution foru. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)
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We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are positive,
only one of the two need be nondegenerate for the overall problem to be well-posed.
We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose thatu(x) is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set ofN
measurementsci, i = 1, 2, . . . , N . The relation betweenu(x) and theci’s is that
eachci measures a (hopefully distinct) aspect ofu(x) through its own linear response
kernelri, and with its own measurement errorni. In other words,

ci ≡ si + ni =
∫

ri(x)u(x)dx + ni (18.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. Theci’s might approximate values ofu(x) at
certain locationsxi, in which caseri(x) would have the form of a more or less
narrow instrumental response centered aroundx = x i. Or, theci’s might “live” in an
entirely different function space fromu(x), measuring different Fourier components
of u(x) for example.

Theinverse problem is, given theci’s, theri(x)’s, and perhaps some information
about the errorsni such as their covariance matrix

Sij ≡ Covar[ni, nj ] (18.4.6)

how do we find a good statistical estimator ofu(x), call it û(x)?
It should be obvious that this is an ill-posed problem. After all, how can we

reconstruct a whole function̂u(x) from only a finite number of discrete valuesc i?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying functionu(x), or about
the nature of the response functionsri(x), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every pointx of the functionû(x). We do want some
large numberM of discrete pointsxµ, µ = 1, 2, . . . , M , whereM is sufficiently
large, and thexµ’s are sufficiently evenly spaced, that neitheru(x) nor r i(x) varies
much between anyxµ andxµ+1. (Here and following we will use Greek letters like
µ to denote values in the space of the underlying process, and Roman letters likei
to denote values of immediate observables.) For such a dense set ofxµ’s, we can
replace equation (18.4.5) by a quadrature like

ci =
∑

µ

Riµu(xµ) + ni (18.4.7)

where theN × M matrix R has components

Riµ ≡ ri(xµ)(xµ+1 − xµ−1)/2 (18.4.8)
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(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(xµ)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form aχ2 measure of how well a model̂u(x) agrees with the measured data,

χ2 =
N∑

i=1

N∑
j=1

[
ci −

M∑
µ=1

Riµû(xµ)

]
S−1

ij

[
cj −

M∑
µ=1

Rjµû(xµ)

]

≈
N∑

i=1

[
ci −

∑M
µ=1 Riµû(xµ)

σi

]2
(18.4.9)

(compare with equation 15.1.5). HereS−1 is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with σi ≡ (Covar[i, i])1/2.

Now you can use the method of singular value decomposition (SVD) in§15.4
to find the vector̂u that minimizes equation (18.4.9). Don’t try to use the method
of normal equations; sinceM is greater thanN they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily largeû(xµ)’s) SVD will
select the one with smallest|û| in the sense of∑

µ

[û(xµ)]2 a minimum (18.4.10)

(look at Figure 2.6.1). This solution is often called theprincipal solution. It
is a limiting case of what is calledzeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: χ2[û] + λ(û · û) (18.4.11)

in the limit of smallλ. Below, we will learn how to do such minimizations, as well
as more general ones, without thead hoc use of SVD.

What happens if we determinêu by equation (18.4.11) with a non-infinitesimal
value ofλ? First, note that ifM 
 N (many more unknowns than equations), then
u will often have enough freedom to be able to makeχ 2 (equation 18.4.9) quite
unrealistically small, if not zero. In the language of§15.1, the number of degrees of
freedomν = N − M , which is approximately the expected value ofχ 2 whenν is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for thetrue underlying functionu(x), which has no adjustable parameters, the
number of degrees of freedom and the expected value ofχ 2 should be aboutν ≈ N .

Increasingλ pulls the solution away from minimizingχ2 in favor of minimizing
û · û. From the preliminary discussion above, we can view this as minimizingû · û
subject to theconstraint that χ2 have some constant nonzero value. A popular
choice, in fact, is to find that value ofλ which yieldsχ2 = N , that is, to get about as
much extra regularization as a plausible value ofχ2 dictates. The resultinĝu(x) is
calledthe solution of the inverse problem with zeroth-order regularization.
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Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations:
agreement between data and solution, or “sharpness” of mapping between true and estimated solution (here
denoted A), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2N)1/2 (the asymptotic χ2

distribution). One might equally plausibly try two values of λ, one giving χ 2 =
N + (2N)1/2, the other N − (2N)1/2.

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g., χ2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that A alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional or regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “ smooth” or “stable” or “ likely” — and that has nothing
at all to do with the measured data.
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The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of 0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value of λ by one or another criterion, ranging
from fairly objective (e.g., making χ2 = N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a final λ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do with a priori expectation, or knowledge, of a solution, while
A has something to do with a posteriori knowledge. The constant λ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.
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18.5 Linear Regularization Methods

What we will call linear regularization is also called the Phillips-Twomey
method [1,2], the constrained linear inversion method [3], the method of regulariza-
tion [4], and Tikhonov-Miller regularization [5-7]. (It probably has other names also,


